√2 1 1-10 2.1 2x2 3x3 6 9 ad infinitium addisi AI aifat ajaib akar 2 al-batani Al-Farabi Al-Khwarizmi alasan Alexandria aljabar Allah anak analisi real analisis analisis real andalusia angka annuity anril anril 1 antara antisymetric anuitas Arab are are. meter aritmatika aritmetik arthur cayley artificial artur Cayley Asah asal-usul asli asli. cacah asosiatif astronomi awet bab 1 bab 2 babylonia bahasa bahaya baku balok bangkit bangun bangun ruang baris barisan bartle Basis bata batasan masalah batu bayi bebas belah ketupat belajar belok beraturan berganti bergantung berkelompok berpangkat dua bertumbuh besaran bilangan bilangan cacah bilangan romawi biografi bmkg bola Bruto buah hati bulat bumi bundar cacah cambridge canton cara cara cepat cepat cerdas chi kuadrat cicak ciri contoh cos cosec cotag dasar data datar deferred Definisi deret desimal determinan diagonal Dialektis diameter differensial dimensi diophantine diophantus diskon distributif ditunda divergen e e coli elements Empirisme epistemologi eropa euclid euclides euler fakta Faktor Faktorisasi fenomenalisme Ferdinand George Frobenius Fibonacci Filsafat filsuf fisika fitur FPB frekuensi frobenius fungsi gabungan gairah garis garis bilangan gauss gempa geometri geometris georg cantor gerak GLB google grafik growing guru harmonik harta hasil hektar Himpunan hiperbola hipotesis hitung homogen hormon hubungan ibnu Batuta ibnu Rusyd Ibnu Sina Identifikasi masalah identitas illustrasi ilmu ilmuwan Ilusi imajiner indikator induksi info informasi intelligence interval Intusionisme IQ irasional islam Israel istimewa jajar genjang jangka jarak jari-jari jarimatika jawa timur jawaban jenis jenius jumlah kajian pustaka kalender kali kalkulus kantor pos kapal karakteristik Karya keajaiban kecepatan kediri Kedokteran kegunaan penelitian kehidupan kelainan keliling Kemampuan kembar kerangka berpikir kerucut kesalahan ketidakterbatasan. terhingga ketidakterhinggaan keuangan kiat-kiat kimia kitab kofaktor kolom Kombinasi kompetensi komposit komunikasi komutatif konsep konsep. integral kontradiksi konvergen konversi korespondensi kotoran KPK kreatif kuadran kuadrat kualitatif kuantitatif kubus kulit kurang kurva lafadz lambang langkah lanjutan latar belakang Latihan layang-layang lebah lengkap leonardo da pisa leonhard lima limas limit Linear lingkar lingkaran linier lipat logaritma Logika luas luas alas luas permukaan luas selimut macam mahasiswa makalah malang manfaat massa Mata matahari Matematika matematikawan Materi matriks matriks nol mean median memahami menggambar menghafal menghantar menghitung mengubah mengurutkan mesir meter meter persegi metode metrik metron mil militer minat misteri modus muda mudah multiplikasi muslim navigasi Neto Netto nilai mutlak normalitas nyata operasi ordo otak pangkat pangkat dua panjang partisi Pecahan pelajar pelajaran pelaut Peluang pembagian pembahasan pembelajaran pembilang pembuktian pendahuluan pendidikan penelitian penemu penerapan pengembara Pengertian pengukuran pengurangan penjelasan Penjumlahan penyebut penyelesaian peran perbandingan perbedaan Perkalian perkalian 1-100 persamaan persegi persegi panjang persen Pertanyaan pesawat peta pi pie pnerapan pokok polinomial Prima prinsip. dalil prisma profesionalisme proses proyeksi putar PV pythagoras rahasia rasional rata-rata real refleksif relasi riak riil romawi RPP Ruang Rumus salah mutlak salah relatif sarrus satuan SD sec section segi enam segiempat segitiga segitiga atas segitiga bawah sehari-hari sejarah sekolah selam sembilan sempurna senang setangkup sherbert SI sifat siku-siku simbol simetri simetrik simetris Similar sin singgung singkat sisi siswa skalar skripsi sman 5 kediri smp Soal space SPL SR STAD statistik statistika struktur subruang subspace substitusi sudut sumbu symetric tabel tabel pengurangan tabel penjumlahan tabung tahap tak terhingga tambah tamda tan tanda tara tegak lurus teka-teki teorema teori terbaru terbatas terdahulu Terkait terner tertutup tidak baku tips titik tolak-setangkip toleransi pengukuran transitif transitive trapesium trenggalek trigon trigonometri Trik tripel tujuan tujuan penelitian tulungagung tunai tunggal turunan tutorial uji ulasan umus unik Vektor volume waktu warisan wesel yunani

Pelurusan Masalah Titik Belok dan Titik Riak


illustrasi titik belok


Hal ini sering kali menjadi kesalahan mahasiswa, dari tahun ke tahun. Salah satu kesalahan tersebut terkait dengan konsep
titik belok (inflection point). Beberapa mahasiswa menulis bahwa titik belok dari y = f(x) adalah titik c dengan f ’’(c) = 0. Padahal, dalam kuliah, telah didefinisikan bahwa titik belok dari y = f(x) adalah titik c sedemikian sehingga f kontinu di c dan kecekungan kurva di sebelah kiri c berbeda dengan kecekungan kurva di sebelah kanan c.

Sebagai contoh, c = 0 merupakan titik belok dari y = f(x) = x3, karena f kontinu di 0, f cekung ke bawah di sebelah kiri 0 (f ’’(x) = 6x < 0 untuk x < 0), dan f cekung ke atas di sebelah kanan 0 (f ’’(x) = 6x > 0 untuk x > 0). Memang, untuk contoh ini, kita mempunyai f (0) = 0, tetapi ini bukan merupakan syarat cukup untuk menjadikan c = 0 titik belok.

Untuk melihat bahwa secara umum ’’(c) = 0 bukan syarat cukup untuk menjadikan c titik belok, coba lihat contoh lainnya, yaitu y = f(x) = x4. Di sini, f’(x) = 4x3 dan ’’(x) = 12x2. Jadi ’’(0) = 0, tetapi ’’(x) > 0 baik untuk x > 0 maupun x < 0. Jadi kurva y = f(x) memiliki kecekungan yang sama di sebelah kiri dan kanan 0. Titik c = 0 dalam hal ini bukan merupakan titik belok.

Titik c dengan ’’(c) = 0  tetapi  ’’(x) bertanda sama di sebelah kiri dan kanan c disebut titik riak (“undulation point”). Selain pada kurva y = f(x) = x4, titik c = 0 juga merupakan titik riak pada kurva y = f(x) = x4 + x, yang grafiknya diperlihatkan pada gambar di bawah ini.

 
titik riak dan titik belok

Masih terkait dengan kurva y = f(x) = x4 dan y = f(x) = x4 + x, bila kita hitung turunan ketiganya, kita peroleh ’’’(x) = 24x, sehingga ’’’(0) = 0. Jadi tidak mengherankan bila kecekungan kurva y = f(x) tidak berbeda di sekitar 0.

Secara umum, jika ’’(c) = 0 dan ’’’(c) ≠ 0, maka c merupakan titik belok (sebagaimana yang terjadi pada y = f(x) = x3). Tetapi, sekalipun f mempunyai turunan kedua di c dan sekitarnya, tidak ada jaminan bahwa f mempunyai turunan ketiga di c. Dalam hal ini, kita harus kembali ke definisi, yaitu memeriksa kecekungan di sebelah kiri dan kanan c.
illustrasi titik riak dan belok
illustrasi titik riak dan belok
Bila ’’(c) = 0 bukan merupakan syarat cukup, apakah ia merupakan syarat perlu? Jawabannya tidak juga. Sebagai contoh, y = f(x) = x|x| kontinu dan mempunyai turunan pertama di 0, yaitu ’(0) = 0, tetapi tidak mempunyai turunan kedua di 0. Meskipun demikian, ’’(x) < 0 untuk x < 0 dan ’’(x) > 0 untuk x > 0, sehingga c = 0 merupakan titik belok karena kurva y = f(x) cekung ke bawah di sebelah kiri 0 dan cekung ke atas di sebelah kanan 0.

Jadi, jangan terpaku pada satu referensi saja. Lebih baik kaji lebih teliti dan temukan bahwa tidak setiap pembahasan di buku itu selalu benar. Tingkatkan rasa ingin tahu anda supaya terjadi hal yang sama dengan pembahasan titik belok dan titik riak ini.

Post a Comment

[blogger][disqus][facebook][spotim]

Author Name

Contact Form

Name

Email *

Message *

Powered by Blogger.