√2 1 1-10 2.1 2x2 3x3 6 9 ad infinitium addisi AI aifat ajaib akar 2 al-batani Al-Farabi Al-Khwarizmi alasan Alexandria aljabar Allah anak analisi real analisis analisis real andalusia angka annuity anril anril 1 antara antisymetric anuitas Arab are are. meter aritmatika aritmetik arthur cayley artificial artur Cayley Asah asal-usul asli asli. cacah asosiatif astronomi awet bab 1 bab 2 babylonia bahasa bahaya baku balok bangkit bangun bangun ruang baris barisan bartle Basis bata batasan masalah batu bayi bebas belah ketupat belajar belok beraturan berganti bergantung berkelompok berpangkat dua bertumbuh besaran bilangan bilangan cacah bilangan romawi biografi bmkg bola Bruto buah hati bulat bumi bundar cacah cambridge canton cara cara cepat cepat cerdas chi kuadrat cicak ciri contoh cos cosec cotag dasar data datar deferred Definisi deret desimal determinan diagonal Dialektis diameter differensial dimensi diophantine diophantus diskon distributif ditunda divergen e e coli elements Empirisme epistemologi eropa euclid euclides euler fakta Faktor Faktorisasi fenomenalisme Ferdinand George Frobenius Fibonacci Filsafat filsuf fisika fitur FPB frekuensi frobenius fungsi gabungan gairah garis garis bilangan gauss gempa geometri geometris georg cantor gerak GLB google grafik growing guru harmonik harta hasil hektar Himpunan hiperbola hipotesis hitung homogen hormon hubungan ibnu Batuta ibnu Rusyd Ibnu Sina Identifikasi masalah identitas illustrasi ilmu ilmuwan Ilusi imajiner indikator induksi info informasi intelligence interval Intusionisme IQ irasional islam Israel istimewa jajar genjang jangka jarak jari-jari jarimatika jawa timur jawaban jenis jenius jumlah kajian pustaka kalender kali kalkulus kantor pos kapal karakteristik Karya keajaiban kecepatan kediri Kedokteran kegunaan penelitian kehidupan kelainan keliling Kemampuan kembar kerangka berpikir kerucut kesalahan ketidakterbatasan. terhingga ketidakterhinggaan keuangan kiat-kiat kimia kitab kofaktor kolom Kombinasi kompetensi komposit komunikasi komutatif konsep konsep. integral kontradiksi konvergen konversi korespondensi kotoran KPK kreatif kuadran kuadrat kualitatif kuantitatif kubus kulit kurang kurva lafadz lambang langkah lanjutan latar belakang Latihan layang-layang lebah lengkap leonardo da pisa leonhard lima limas limit Linear lingkar lingkaran linier lipat logaritma Logika luas luas alas luas permukaan luas selimut macam mahasiswa makalah malang manfaat massa Mata matahari Matematika matematikawan Materi matriks matriks nol mean median memahami menggambar menghafal menghantar menghitung mengubah mengurutkan mesir meter meter persegi metode metrik metron mil militer minat misteri modus muda mudah multiplikasi muslim navigasi Neto Netto nilai mutlak normalitas nyata operasi ordo otak pangkat pangkat dua panjang partisi Pecahan pelajar pelajaran pelaut Peluang pembagian pembahasan pembelajaran pembilang pembuktian pendahuluan pendidikan penelitian penemu penerapan pengembara Pengertian pengukuran pengurangan penjelasan Penjumlahan penyebut penyelesaian peran perbandingan perbedaan Perkalian perkalian 1-100 persamaan persegi persegi panjang persen Pertanyaan pesawat peta pi pie pnerapan pokok polinomial Prima prinsip. dalil prisma profesionalisme proses proyeksi putar PV pythagoras rahasia rasional rata-rata real refleksif relasi riak riil romawi RPP Ruang Rumus salah mutlak salah relatif sarrus satuan SD sec section segi enam segiempat segitiga segitiga atas segitiga bawah sehari-hari sejarah sekolah selam sembilan sempurna senang setangkup sherbert SI sifat siku-siku simbol simetri simetrik simetris Similar sin singgung singkat sisi siswa skalar skripsi sman 5 kediri smp Soal space SPL SR STAD statistik statistika struktur subruang subspace substitusi sudut sumbu symetric tabel tabel pengurangan tabel penjumlahan tabung tahap tak terhingga tambah tamda tan tanda tara tegak lurus teka-teki teorema teori terbaru terbatas terdahulu Terkait terner tertutup tidak baku tips titik tolak-setangkip toleransi pengukuran transitif transitive trapesium trenggalek trigon trigonometri Trik tripel tujuan tujuan penelitian tulungagung tunai tunggal turunan tutorial uji ulasan umus unik Vektor volume waktu warisan wesel yunani

MACAM - MACAM SIMETRI PADA BANGUN DATAR

Penjelasan Pengertian Macam-macam Simetri pada Bangun Datar Lengkap


Simetri Lipat

Secara singkat simetri lipat pada bangun datar bisa diartikan sebagai banyaknya lipatan pada bangun datar yang dapat membagi bangun datar tersebut sehingga setengah bagian dari bangun datar tersebut bisa menutupi setengah bagian yang lain. Garis yang dapat membagi sebuah bangun datar menjadi dua dan kongruen disebut sebagai sumbu simetri. Perlu kalian ketahui bahwasannya tidak setiap bangun datar memiliki garis yang dinamakan sebagai sumbu simetri. Ada beberapa bangun datar yang tidak memiliki sumbu simetri sama sekali. Kalian bisa melihat beberapa bangun datar yang memiliki sumbu simetri pada gambar berikut.

Pengertian dan Macam-macam Simetri pada Bangun Datar


Pada gambar di atas garis atau sumbu simetri digambarkan dengan garis putus-putus.  Apabila kita melipat atau memotong sebuah bangun datar dengan mengikuti garis-garis simetri tersebut maka bangun datar itu akan terbagi menjadi dua bagian yang sama besar.

Simetri Putar

Sebuah bangun datar dapat dikatakan mempunyai simetri putar apabila ia memiliki sebuah titik pusat, dan apabila bangun datar tersebut dapat kita putar kurang dari satu putaran penuh untuk mendapatkan bayangan yang tepat seperti bangun semula. Sebagai contoh coba kalian perhatikan gambar berikut ini:

Pengertian dan Macam-macam Simetri pada Bangun Datar


Pada gambar di atas, ada sebuah bangun datar berbentuk segitiga sama sisi. Jika kita memutar segitiga tersebut sebanyak 1/3 putaran berlawanan ara jarum jam, maka bentuknya akan tetap sama seperti semula. Kemudian jika kita memutar segitiga sama sisi tersebut sebanyak 2/3 putaran hasil bayangannya tetap sama persis dengan bangun semula. Itu artinya segitiga sama sisi memiliki 3 simetri putar.

Apabila kita memutar sebuah bangun datar dan hanya bisa mendapatkan bayangan seperti bangun semula dalam 1 putaran penuh, artinya bangun datar tersebut tidak memiliki simetri putar sama sekali. Contohnya adalah trapesium, bangun datar ini tidak memiliki simetri putar karena kita harus memutar sebanyak 1 putaran penuh untuk memperoleh bentuk bayangan trapesium seperti bentuk bangun semula.

Tidak semua bangun datar memiliki simetri putar dan simetri lipat. Beberapa bangun datar ada yang hanya memiliki simetri putar, sementara yang lain ada yang hanya memiliki simetri lipat. Kalian bisa melihat daftar simetri lipat dan simetri putar yang dimiliki oleh tiap-tiap bangun datar pada tabel berikut ini:


Nama Bangun DatarSimetri LipatSimetri PutarSumbu Simetri
Persegi444
Persegi Panjang222
Belah Ketupat222
Jajar Genjang-2-
Segitiga Sama Kaki1-1
Segitiga Sama Sisi333
Segitiga Sembarang---
Segitiga Siku-siku1-1
Trapesium Sama Kaki1-1
Trapesium Siku-siku---
Trapesium Sembarang---
Layang-layang1-1
LingkaranTak hinggaTak hinggaTak hingga
Sekian pembahasan tentang simetri, semoga bermanfaat. Terima kasih :). Pembaca yang Bijak selalu meninggalkan jejak.



Labels: , , ,

Post a Comment

[blogger][disqus][facebook][spotim]

Author Name

Contact Form

Name

Email *

Message *

Powered by Blogger.